[Home]

##### BLp2DLDA

A Matlab code for Robust bilateral Lp-norm two-dimensional linear discriminant analysis. (You could Right-Click [Code] , and Save, then you can download the whole matlab code.)

##### Reference

Chun-Na Li, Yuan-Hai Shao, Zhen Wang, Nai-Yang Deng "Robust bilateral Lp-norm two-dimensional linear discriminant analysis" Submitted 2018.

[Slides]

##### Main Function

function [W] = BLp2DLDA(X,Y,dim,p) % BLp2DLDA: Robust bilateral Lp-norm 2DLDA for linear discriminant analysis % % useage: [W] = BLp2DLDA(X,Y,dim,p) % % Input: % X: input of Data. % Y: the class label. % dim: the reduced dimension. % p: the selection of p in Lp-norm % Output: % W: transforamtion matrix (left side). % Reference: % Chun-Na Li, Yuan-Hai Shao,Zhen Wang Nai-Yang Deng. "Robust bilateral % Lp-norm two-dimensional linear discriminant analysis" % Submitted 2018 % % Version 1.2 --Aug/2018 % % Written by Chun-Na Li (na1013na@163.com) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% itmax = 50; [d,n,N]=size(X); % N samples，each sample is with d*n dimension. c=length(unique(Y)); w = rand(d,1); % Random initialization. wk = []; % The k-th projection vector. W = []; % The final projection matrix. for k = 1:dim barX = mean(X,3); Xmean = zeros(d,n,c); num = zeros(c+1,1); Hi = zeros(d,n,c); Zij = zeros(d,n,c); for i = 1:c tempMatrix = X(:,:,Y==i); num(i+1,1) = size(tempMatrix,3); Hi(:,:,i) = sum(tempMatrix,3)/num(i+1,1)-barX; Xmean(:,:,i) = sum(tempMatrix,3)/num(i+1,1); end Zij = X - Xmean(:,:,Y(1:N)); it=0; theta = rand*pi/2; obj0 = -1e-12; while 1 A = zeros(d,1); B = 0; C = 0; D = zeros(d,1); G = 0; it=it+1; for i = 1:c Atemp = cumsum(Hi(:,:,i)*(num(i+1,1)*diag(sign(w'*Hi(:,:,i)).*((abs(w'*Hi(:,:,i))).^(p-1)))),2); Atemp = Atemp(:,n); A = A + Atemp; C = C + num(i+1,1)*(norm(w'*Hi(:,:,i),p)^p); for j = 1:num(i+1,1) B = B + norm(w'*Zij(:,:,num(i,1)+j),p)^p; Dtemp = cumsum(Zij(:,:,num(i,1)+j)*diag(sign(w'*Zij(:,:,num(i,1)+j)).*((abs(w'*Zij(:,:,num(i,1)+j))).^(p-1))),2); Dtemp = Dtemp(:,n); D = D + Dtemp; G = G + norm(w'*Zij(:,:,num(i,1)+j),p)^p; end end obj(it) = C/G; A = p*A; D = p*D; G = G^2; grad = (A*B-C*D)/G; gradproj = grad - (w'*grad)*w; gradproj = gradproj/norm(gradproj); wk = w*cos(theta) + gradproj*sin(theta); if obj(it)>obj0 theta = min(2*theta,pi/2); else theta = theta/2.0; end if norm(w-wk) < 1e-5 ||it>itmax break; end w = wk; obj0 = obj(it); end for h = 1:N X(:,:,h) = X(:,:,h)-wk*wk'*X(:,:,h); end W = [W,wk]; end end
##### Contacts

Any question or advice please email to na1013na@163.com or shaoyuanhai21@163.com.

• Last updated: Nov 21, 2017