[Home]

##### L12DLDA

A Matlab code for L1-norm two-dimension LDA. (You could Right-Click [Code] , and Save, then you can download the whole matlab code.)

##### Reference

Chun-Na Li, Yuan-Hai Shao, Nai-Yang Deng "Robust L1-norm two-dimensional linear discriminant analysis" Submitted 2014.

##### Main Function

function [W] = L12DLDA(X,Y,itmax) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % L12DLDA: The L1-norm LDA for two-dimension redundency % % useage: [W] = L12DLDA(X,Y,itmax) % % Input: % X: input of Data. % Y: the class label. % itmax: the iteration (No.) step. % Output: % W: transfer matrix. % % Examples: % load('2Dexample.mat'); % [W] = L12DLDA(X,Y) % Reference: % Chun-Na Li, Yuan-Hai Shao, Nai-Yang Deng "Robust L1-norm two-dimensional % linear discriminant analysis" Submitted 2014 % % Version 1.2 --Oct/2014 % % Written by Chun-Na Li (na1013na@163.com) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (nargin <2 | nargin>3) % check correct number of arguments help L12DLDA else fprintf('_____________________________\n') if (nargin<3) itmax=1000; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X=X/255.0; [d,n,N]=size(X); % N samples，each sample is with d*n dimension. c=size(unique(Y),1); % c classes. w = rand(d,1); % Random initialization. w = w/norm(w); % Normalize w. wk=[]; % The k-th projection vector. W=[]; % The final projection matrix. dim=30; % The maximum reduced dimension. delta=0.05; % The learning rate. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The following is to obtain W （for k=1:dim）. The size of W is d times dim. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for k=1:dim %-------All mean and the mean of the i-th class------ barX=zeros(d,n); barX=mean(X,3);% All mean. Xmean=zeros(d,n,c); % The matrix of means for c classes. num=zeros(c,1); %-------N_i times Y_i------ allNitimesYi=zeros(d,n,c); for i=1:c tempMatrix=X(:,:,find(Y==i)); % Put the samples of the i-th calss in tempMatrix. num(i,1)=size(tempMatrix,3); Xmean(:,:,i)=sum(tempMatrix,3)/num(i,1);% Compute the i-th mean and save it in Xmean(:,:,i). allNitimesYi(:,:,i)=num(i,1)*(Xmean(:,:,i)-barX); end %-------Z_ij------ allZij=X-Xmean(:,:,Y(1:N)); it=0; while 1 it=it+1; b=zeros(d,1); p=zeros(d,1); r=ones(n,1); s=ones(n,1); numeratorw=0; denominatorw=0; %-------numerator of (6)------ for i=1:c numeratorw=numeratorw+norm(w'*allNitimesYi(:,:,i),1); end %-------denominator of (6)------ for h=1:N denominatorw=denominatorw+norm(w'*allZij(:,:,h),1); end %--------p(t)------------- for i=1:c temp=find(w'*(allNitimesYi(:,:,i))<0); r(temp')=-1; p=p+(allNitimesYi(:,:,i)*r); end %--------b(t)------------- for h=1:N temp=find(w'*(allZij(:,:,i))<0); s(temp')=-1; b=b+(allZij(:,:,h)*s); end %--------g(w(t))------------- if b==0 g=p/(w'*p); else g=p/(w'*p)-b/(w'*b); end wk=w+delta*g; wk=wk/norm(wk); if wk'*b==0 || wk'*p==0 wk=wk+(0.001+0.002*rand(d,1)); wk=wk/norm(wk); end %--------compute new objective numerator and denominator of (6)------------- numeratorwk=0; denominatorwk=0; for i=1:c numeratorwk=numeratorwk+norm(wk'*allNitimesYi(:,:,i),1); end for h=1:N denominatorwk=denominatorwk+norm(wk'*allZij(:,:,h),1); end %-------convergence check------- if (abs(numeratorwk/denominatorwk-numeratorw/denominatorw)-(1e-6)<0)|| norm(w-wk) < 1e-6 ||it>itmax break; end w=wk; end %-------Projcet samples in each recursive procedure------ for h = 1:N X(:,:,h) = X(:,:,h)-wk*wk'*X(:,:,h); % Makesure the projections are orthogonal to each other end W=[W,wk]; end
##### Contacts

Any question or advice please email to na1013na@163.com or shaoyuanhai21@163.com.

• Last updated: Otc 27, 2014