[Home]



Correspondence Biography Interests Academic Activities Publications



  Correspondence

  • Name:   Chuna-Na Li
  • E-mail:   na1013na@163.com
  • Phone:   (+86)0571-87317741(O)
  • Address:   Zhijiang College, Zhejiang University of Technology, Hangzhou 310024, China

    [go top]


      Biography


         Chuna-Na Li received her Master¡¯s degree and Ph.D degree in Department of Mathematics from Harbin Institute of Technology, China, in 2009 and 2012, respectively. Currently, she is a lecturer at the Zhijiang College, Zhejiang University of Technology. Her research interests include optimization methods, machine learning and data mining.

    [go top]


      Research Interests

  • ML/DM topics

         Supervised learning

         Cost-sensitive and class-imbalance learning

         Dimensionality reduction and feature selection

         Nonconvex optimization

    [go top]


    Selected Publications



  • C. N. Li, Z.R. Zheng, M.Z. Liu, Y.H. Shao, W.J.Chen. Robust recursive absolute value inequalities discriminant analysis with sparseness. Neural Networks. 2017, 93£º205-218.(SCI)
  • C. N. Li, Chen W J, Y.H. Shao. Sparse Lp-norm principal component analysis with robustness (In Chinese). Acta Automatica Sinica, 2017, 43(1): 142-151.(EI)
  • C Wang, C. N. Li, H. X. Pei, Y. R. Guo, Y. H. Shao. Alternating direction method of multipliers for L1-and L2-norm best fitting hyperplane classifier. Procedia Computer Science, 2017, 108: 1292-1301.
  • Y.F. Ye, Y.H. Shao, N.Y. Deng, C. N. Li, X.Y. Hua. Robust Lp-norm least squares support vector regression with feature selection. Applied Mathematics and Computation, 2017, 305: 32-52.
  • Ye Y F, Ying C, Shao Y H, C. N. Li, Y. J. Chen. Robust and sparse lp-norm support vector regression. Journal of advanced computational intelligence and intelligent informatics, 2017, 21(6): 989-997
  • Ye Y F, Ying C, Shao Y H, C. N. Li, Y. J. Chen. Robust and sparse lp-norm support vector regression. Journal of advanced computational intelligence and intelligent informatics, 2017, 21(6): 989-997.
  • H X Pei, Z R Zheng, C Wang, C. N. Li, Y H Shao. D-FCM: Density based fuzzy c-means clustering algorithm with application in medical image segmentation. Procedia Computer Science, 2017, 122: 407-414.
  • C. N. Li, Y. H. Shao, N. Y. Deng. Robust L1-norm nonparallel proximal support vector machine. Optimization, 2016, 65(1):169-183. (SCI)
  • W. J. Chen, Y. H. Shao£¬C. N. Li, N. Y. Deng. MLTSVM: A novel twin support vector machine to multi-label learning. Pattern Recogn, 2016, 52: 61-74. (SCI)
  • W. J. Chen,C. N. Li, Y. H. Shao£¬N. Y. Deng. Semi-supervised projection twin support vector machine via manifold regularization. (In Chinese) Pattern Recogn. & Artif. Intell, 2016, 28(2): 97-107.
  • Yuan-Hai Shao, Zhen Wang, Chun-Na Li, Nai-Yang Deng. Local sensitive proximal classifier with consistency for small sample size problem. In: Proceedings of the 15th IEEE International Conference on Data Mining Workshops (ICDM'15), 2015.(EI)
  • Ya-Fen Ye,Yuan-Hai Shao, Chun-Na Li. Wavelet Lp-norm support vector regression with feature selection, Journal of Advanced Computational Intelligence and Intelligent Informatics, 2015, 19(3): 407-416. (EI)
  • Ya-Fen Ye, Yue-Xiang Jiang,Yuan-Hai Shao, Chun-Na Li. Financial conditions index construction through weighted Lp-norm support vector regression, Journal of Advanced Computational Intelligence and Intelligent Informatics, 2015, 19(3): 397-406. (EI)
  • C. N. Li, Y. H. Shao, N. Y. Deng. Robust L1-norm two-dimensional linear discriminant analysis. Neural Networks, 2015, 65: 92-104. (SCI)
  • Y. H. Shao, W. J. Chen, Z. Wang, C. N. Li, N. Y. Deng. Weighted linear loss twin support vector machine for large-scale classification. Knowledge-Based Systems, 2015, 73: 276-288. (SCI)
  • Z.-M. Yang, Y.-R. Guo, C. N. Li, Y.-H. Shao. Local k-proximal plane clustering. Neural Computing and Applications, 2015, 26(1): 199-211. (SCI)
  • Y.-H. Shao, C. N. Li, Z. Wang, M.-Z. Liu, N.-Y. Deng. Proximal classifier via absolute value inequalities. In: Proceedings of the 14th IEEE International Conference on Data Mining Workshops (ICDM'14), , 2014, 74-79. (EI)
  • C. N. Li, Y. F. Huang, H. J. Wu, Y. H. Shao, Z. M. Yang. Multiple recursive projection twin support vector machine for multi-class classification. International Journal of Machine Learning and Cybernetics, 2014, DOI: 10.1007/s13042-014-0289-2. (EI)
  • C. N. Li. Goodearl-Menal pairs of linear transformations. Journal of Mathematical Research with Applications, 2014, 34(2): 161-167. The core of Chinese core journals by Chinese Science Citation Database (CSCD)
  • G. H. Tang, C. N. Li, Y. Zhou. Study of Morita contexts. Communications in Algebra, 2014, 42(4): 1668-1681. (SCI)
  • C. N. Li, Y. Q. Zhou. On p.p. structural matrix rings. Linear Algebra and Its Applications, 2012, 436(9): 3692-3700. (SCI)
  • C. N. Li, L. Wang, Y. Q. Zhou. On rings with the Goodearl-Menal condition. Communications in Algebra, 2012, 40(12): 4679-4692. (SCI)
  • C. N. Li, Y. Q. Zhou. On strongly *-clean rings. Journal of Algebra and Its Applications, 2011, 10(6): 1363-1370. (SCI)

    [go top]